Microsensor Technologies for Plant Growth System Monitoring

Chang-Soo Kim

Depts. of Electrical & Computer Eng. and Biological Sciences

Univ. of Missouri-Rolla

- Critical need of precise control of root zone; wetness, oxygen, nutrients, temperature.
- Ideal sensor configuration; miniaturization, multiple, array, low power, robustness.
- Thin film flexible microsensor strips for dissolved oxygen and wetness detection.
- Flexible microfluidic substrate for rhizosphere monitoring and manipulation.

Experimental setup with a porous tube growth system

 Dissolved oxygen microsensor strip
 (3-electrode amperometric measurement by enwrapping the porous tube surface)

 Wetness sensor strip (4-electrode conductivity measurement along the porous tube surface)

Dissolved oxygen measurement on the porous tube surface

- With a commercial oxygen probe;
- Reflecting O₂ value of inner sol. at (+) pressures.
- Convergence to 20% value (air-sat. value) at (-) pressures.

- With a microsensor array;
- Reflecting O₂ value of inner sol. at (+) pressures.
- Scattering around 0% value at (-) pressures (due to surface dryness and absence of sensor permeable membrane).

Wetness measurement on the porous tube surface

• A steep decrease of surface impedance at the transition from (-) to (+) pressure.

Experimental setup with a particulate growth system (Turface® 1-2 mm size particulate)

- Dissolved oxygen and wetness measurements within an unsaturated Turface® media.
- Repeated flooding and suction of nutrient solution using the embedded porous tube.

Dissolved oxygen measurements within the particulate

- With a commercial oxygen probe;
- Convergence to O₂ value of inner sol. with repeated flooding.
- Convergence to 20% value (air-sat. value) with suction.

- With a microsensor array;
- Better reflection of O₂
 value of inner sol. with repeated flooding.
- Better reflection of O₂
 value of inner sol. with repeated suction.

Wetness measurement within the particulate

 Variations of the impedance due to repeated solution flooding and suction.

Flexible microfluidic substrate for rhizosphere monitoring and manipulation

- Root hair growth on the surface of a porous membrane with underlying microfluidic channels and microsensor arrays.
- Exemplary layout of planar microfluidic substrates.

Conceptual growth system using flexible microfluidic rhizosphere substrate

- Rhizosphere manipulation using embedded microchannels (e.g. change of nutrient solution composition).
- Rhizosphere *in situ* monitoring using embedded microsensor arrays or remote optical sensors.
- Root growth pattern analysis using optical imaging.

Summary

- Demonstration of feasibility of microsensor for porous tube and particulate growth systems.
- Dissolved oxygen.
- Wetness.
- Flexible microfluidic substrate with microfluidic channels and microsensor arrays.
- Dynamic root zone control/monitoring in microgravity.
- Rapid prototyping of phytoremediation.
- A new tool for root physiology and pathology studies.

Acknowledgement: NASA grant NAG9-1423